Habitat loss through disruption of constrained dispersal networks.
نویسندگان
چکیده
Large losses of habitat could be caused by land use change that disrupts the dispersal networks used by migratory species. We assessed the relative losses of habitat for diadromous fish (i.e., those migrating between sea and freshwater) due to physical barriers, degradation of migratory passage associated with catchment land use, and site-scale land use characteristics on the West Coast, South Island, New Zealand. Fish occurrence, land use data, and river network models were analyzed in a GIS and subjected to a three-level hierarchical analysis. To identify accessible habitat not restricted by physical barriers, we used the migratory distance and maximum downstream slope encountered to identify accessible sites in least-impacted catchments and applied the results to all catchments within the study area. For two fish species, banded kokopu (Galaxias fasciatus) and koaro (G. brevipinnis), sites modeled as accessible using logistic regression in least-impacted catchments were then used to assess the impacts of catchment-scale deforestation and downstream land uses on habitat loss. Finally, sites not restricted by physical barriers or land-use-related impacts on migratory passage were used to model the effects of local land use. The models indicated that koaro and banded kokopu potentially had access to 28,000 km and 5300 km, respectively, of the 40,600 km of streams within the study area. Impacts due to intensive agricultural land use downstream in catchments affecting migratory passage were predicted to reduce the accessible habitats for koaro and banded kokopu by 55% and 70%, respectively. Local land use further reduced koaro and banded kokopu habitats to 70% and 90%, respectively, of total accessible habitat. Habitat lost through disruption of the dispersal network was disproportionately large because potentially useable habitat was rendered inaccessible.
منابع مشابه
Dispersal success on spatially structured landscapes: when do spatial pattern and dispersal behavior really matter?
Dispersal is a fundamental component of many spatial population models. Concerns over the need to incorporate detailed information on dispersal behavior in spatially explicit population models (SEPMs) motivated us to undertake a simulation study in which we explored (1) the conditions under which landscape structure affects dispersal success and (2) the dependency of dispersal success on the ch...
متن کاملEffects of landscape corridors on seed dispersal by birds.
Habitat fragmentation threatens biodiversity by disrupting dispersal. The mechanisms and consequences of this disruption are controversial, primarily because most organisms are difficult to track. We examined the effect of habitat corridors on long-distance dispersal of seeds by birds, and tested whether small-scale (<20 meters) movements of birds could be scaled up to predict dispersal of seed...
متن کاملClosing the gaps for animal seed dispersal: Separating the effects of habitat loss on dispersal distances and seed aggregation
Habitat loss can alter animal movements and disrupt animal seed dispersal mutualisms; however, its effects on spatial patterns of seed dispersal are not well understood. To explore the effects of habitat loss on seed dispersal distances and seed dispersion (aggregation), we created a spatially explicit, individual-based model of an animal dispersing seeds (SEADS-Spatially Explicit Animal Disper...
متن کاملDescribing dispersal under habitat constraints: A randomization approach in lesser kestrels
Animal dispersal is usually studied with capture-mark-reencounter data, which provide information on realized dispersal but rarely on underlying processes. In this context, the unreliable assumption of all habitat being available is usually made when describing and analysing dispersal patterns. However, actual settlement options may be constrained by the spatial distribution of appropriate patc...
متن کاملLoss of Connectivity in a Highly Fragmented Tropical Landscape: Use of Ecological Processes as Functional Indicators of Biodiversity Decline
Landscape modification has been increasing in the past few decades. In particular, the biodiversity of tropical rainforests has been threatened by an intensive loss of habitat and changes in land use policies [1-3]. These processes modify the spatial pattern of the remaining forests increasing for example patch isolation [3,4], potentially affecting wildlife through changes in ecological proces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2006